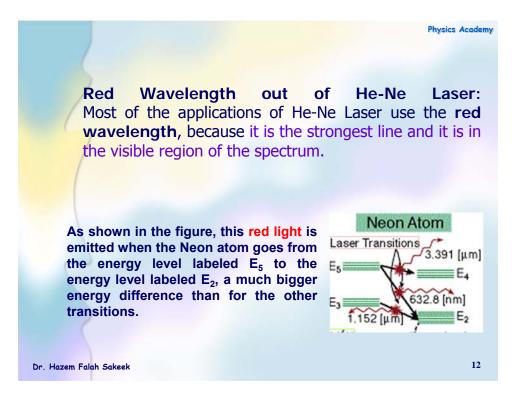
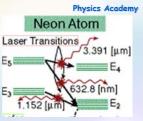


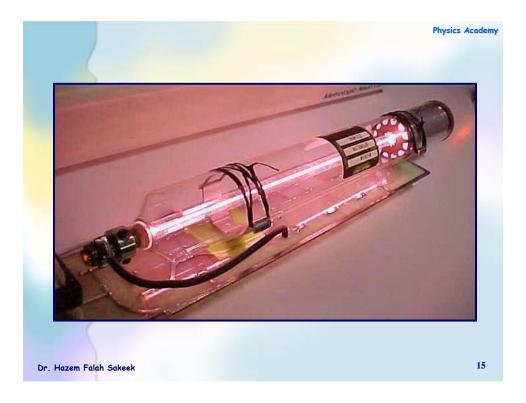
	MANELENCTUS		
	WAVELEINGTHS		MOST COMMON LASERS
	Argon fluoride (Excimer-UV)	0.193	Helium neon (yellow) 0.594
	Krypton chloride (Excimer-UV)	0.222	Helium neon (orange) 0.610
	Krypton fluoride (Excimer-UV)	0.248	Gold vapor (red) 0.627
	Xenon chloride (Excimer-UV)	0.308	Helium neon (red) 0.633
	Xenon fluoride (Excimer-UV)	0.351	Krypton (red) 0.647
	Helium cadmium (UV)	0.325	Rohodamine 6G dye (tunable) 0.570-0.650
	Nitrogen (UV)	0.337	Ruby (CrAIO ₃) (red) 0.694
	Helium cadmium (violet)	0.441	Gallium arsenide (diode-NIR) 0.840
	Krypton (blue)	0.476	Nd:YAG (NIR) 1.064
	Argon (blue)	0.488	Helium neon (NIR) 1.15
	Copper vapor (green)	0.510	Erbium (NIR) 1.504
	Argon (green)	0.514	Helium neon (NIR) 3.39
	Krypton (green)	0.528	Hydrogen fluoride (NIR) 2.70
	Frequency doubled	0.532	Carbon dioxide (FIR) 9.6
	Nd YAG (green)	0.002	Carbon dioxide (FIR) 10.6
	Helium neon (green)	0.543	
	Krypton (yellow)	0.568	
1	Copper vapor (vellow)	0.570	
	copper taper (Jenoti)	0.010	
Key:	UV = ultraviolet (0.200-0.400 µm)		
	$VIS = visible (0.400-0.700 \mu m)$		
	NIR = near infrared (0.700-1.400 μ m)		wavelength
	····· · ···· · ···· · ···· · ···· · ····		

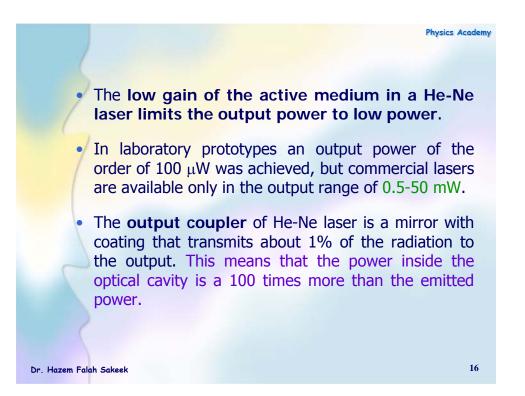


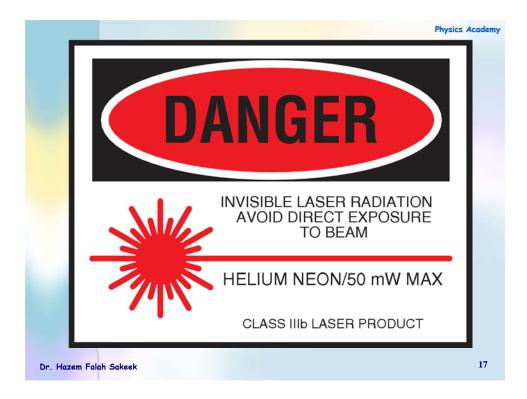


<page-header><page-header><text><list-item><list-item><page-footer>

A problem with creating this red light is that a Neon atom in state E_5 may also emit 3.3913 µm radiation. This emission decreases the population of the E_5 level, without producing visible radiation.


13


The solution to this problem is to use a <u>special coating on the</u> <u>laser mirrors</u> which selectively reflect only the red light. This coating causes reflection back into the optical cavity of only the desired (red) wavelength, while all other wavelengths are transmitted out, and not forced to move back and force through the active medium.


In a similar way, other selective reflecting coating can be used on the mirrors to select other transitions. This procedure allows commercial production of He-Ne lasers at other wavelengths in the visible spectrum. For example, orange, yellow and green He-Ne lasers can be produced, but the laser efficiency is much lower than for the red.

Dr. Hazem Falah Sakeek

	Commercial He		cs Academy
(Wavelength:	632.8 [nm]	
	Output Power:	0.5-50 [mW]	
	Beam Diameter:	0.5-2.0 [mm]	
	Beam Divergence:	0.5-3 [mRad]	
	Coherence Length:	0.1-2 [m]	
_	Power Stability:	5 [%/Hr]	
	Lifetime:	>20,000 [Hours]	
Dr. Hazem F	alah Sakeek		18